Selected Solutions for Chapter 7: Quicksort

Solution to Exercise 7.2-3

PARTITION does a "worst-case partitioning" when the elements are in decreasing order. It reduces the size of the subarray under consideration by only 1 at each step, which we've seen has running time $\Theta(n^2)$.

In particular, PARTITION, given a subarray A[p ...r] of distinct elements in decreasing order, produces an empty partition in A[p ...q - 1], puts the pivot (originally in A[r]) into A[p], and produces a partition A[p + 1...r] with only one fewer element than A[p ...r]. The recurrence for QUICKSORT becomes $T(n) = T(n-1) + \Theta(n)$, which has the solution $T(n) = \Theta(n^2)$.

Solution to Exercise 7.2-5

The minimum depth follows a path that always takes the smaller part of the partition—i.e., that multiplies the number of elements by α . One iteration reduces the number of elements from *n* to αn , and *i* iterations reduces the number of elements to $\alpha^{i}n$. At a leaf, there is just one remaining element, and so at a minimum-depth leaf of depth *m*, we have $\alpha^{m}n = 1$. Thus, $\alpha^{m} = 1/n$. Taking logs, we get $m \lg \alpha = -\lg n$, or $m = -\lg n/\lg \alpha$.

Similarly, maximum depth corresponds to always taking the larger part of the partition, i.e., keeping a fraction $1 - \alpha$ of the elements each time. The maximum depth *M* is reached when there is one element left, that is, when $(1 - \alpha)^M n = 1$. Thus, $M = -\lg n / \lg(1 - \alpha)$.

All these equations are approximate because we are ignoring floors and ceilings.