Selected Solutions for Chapter 7: Quicksort

Solution to Exercise 7.2-3

Partition does a "worst-case partitioning" when the elements are in decreasing order. It reduces the size of the subarray under consideration by only 1 at each step, which we've seen has running time $\Theta\left(n^{2}\right)$.
In particular, Partition, given a subarray $A[p \ldots r]$ of distinct elements in decreasing order, produces an empty partition in $A[p . . q-1]$, puts the pivot (originally in $A[r]$) into $A[p]$, and produces a partition $A[p+1 \ldots r]$ with only one fewer element than $A[p \ldots r]$. The recurrence for Quicksort becomes $T(n)=$ $T(n-1)+\Theta(n)$, which has the solution $T(n)=\Theta\left(n^{2}\right)$.

Solution to Exercise 7.2-5

The minimum depth follows a path that always takes the smaller part of the parti-tion-i.e., that multiplies the number of elements by α. One iteration reduces the number of elements from n to αn, and i iterations reduces the number of elements to $\alpha^{i} n$. At a leaf, there is just one remaining element, and so at a minimum-depth leaf of depth m, we have $\alpha^{m} n=1$. Thus, $\alpha^{m}=1 / n$. Taking logs, we get $m \lg \alpha=-\lg n$, or $m=-\lg n / \lg \alpha$.
Similarly, maximum depth corresponds to always taking the larger part of the partition, i.e., keeping a fraction $1-\alpha$ of the elements each time. The maximum depth M is reached when there is one element left, that is, when $(1-\alpha)^{M} n=1$. Thus, $M=-\lg n / \lg (1-\alpha)$.
All these equations are approximate because we are ignoring floors and ceilings.

